Computer Vision 4

Week13 주간 학습정리 - [Semantic Segmentation 강의 정리]

📌 의료쪽에서 Unet이 많이 사용되는 이유의료 분야에서 U-Net이 많이 사용되는 이유는 주로 의료 영상의 특성과 U-Net의 구조적 특징이 잘 맞아떨어지기 때문.1. Segmentation에 최적화된 구조의료 영상 데이터는 주로 픽셀 단위로 정밀한 분할(Segmentation)이 필요합니다. 예를 들어, CT, MRI, X-ray 이미지에서 특정 장기, 병변, 또는 뼈 구조를 정확히 추출해야 합니다.U-Net은 엔코더-디코더 구조로 되어 있어, 이미지를 압축(Downsampling)한 후 다시 복원(Upampling)하며 세부 정보를 보존할 수 있습니다.2. 스킵 연결(Skip Connection)U-Net의 주요 특징은 스킵 연결입니다. 이는 엔코더에서 추출된 저수준(low-level) 특징을 디..

Week12 주간 학습정리 - [Data-Centric CV 대회 후 회고]

📌 DATA Relabeling오픈 데이터 가져와서 우리의 가이드라인에 맞게 annotation 구분선 같은거 annotation 다해서 구분선 있는 데이터 더 많이 해서 학습하는 방법도 있긴함..CVAT, Roboflow로 annotation을 수정할 수 있음을 직접 경험함.Roboflow로 직접 Relabeling 작업을 했고 Relabel 된 데이터를 가지고 학습했을 때 성능 향상이 있어서 데이터 quality가 중요함을 다시 몸소 깨달았고 성취감도 있었다.📌 Model vs Data실무에서는 data centric이 중요하다~!sample level analysis 가 중요하다.📌 아쉬운 점github 협업을 다음 프로젝트 부터는 좀 더 체계적으로 해야 겠다.슬랙과 github, notion..

Week5 주간 학습정리 - [CV 이론]

개념/code 학습 중 생긴 이슈 및 해결 방법에 대해 기록하자 개념 Issue & Solution1. Zero shot & Few shot.. Zero-shot learning (ZSL)은 모델이 학습 과정에서 본 적 없는 새로운 클래스를 인식할 수 있도록 하는 학습 방법일반적으로 딥러닝은 training에 사용된 class만을 예측할 수 있다. 따라서 unseen data가 입력되면 seen class로 예측하는 바보가 되버리는데, Zero shot은 train set에 포함되지 않은 unseen class를 예측하는 분야즉, unseen data를 입력 받아도, seen data로 학습된 지식을 전이하여 unseen data를 unseen class로 예측 가능open set recognition은..

Week3 주간 학습정리 - [EDA&DataViz]

개념/code 학습 중 생긴 이슈 및 해결 방법에 대해 기록하자개념 Issue & Solution1. pallete → 색약, 색맹 색약, 색맹..→ 과학, 의료 같은 분야에서는 이를 보완하는 색 pallete 필요.→ viridis,, 등등 2. 이미지 데이터 → 어떤 도메인에서 왔는가?어떤 도메인에서 왔는가? 가 가장 중요!! 의료 데이터의 경우는 정확도가 상당히 중요, 사람 데이터는 어떤 왜곡점이 있는지가 중요..만화 캐릭터에 대해서 이미지 생성 task를 가지게 되면 어떤 게 중요?만화는 실제 사람의 얼굴과 다르게 눈이 엄청 커도 되고,, 비현실적인 얼굴의 비율을 가져도 허용이미지 자체가 도메인에 따라 다양한 특성을 가지고 허용할 수 있는 범위가 달라지기 때문에 항상 가장 중요한 것은 도메인!! ..

카테고리 없음 2024.08.19